
Hemangioblastomas are benign vascular tumors of the central
nervous system arising predominantly in the cerebellum, but
may also be found in the brainstem, spinal cord, cerebrum, or the
retina1,2. These neoplasms occur as a sporadic entity or in
association with von Hippel-Lindau (vHL) disease, a disorder
with an autosomal dominant pattern of inheritance1. The
sporadic tumors usually occur in adults with an average age of
presentation in the 5th and 6th decade, while the von Hippel-
Lindau associated tumors may present earlier (3rd  and 4th
decades of life)1,3,4. Sporadic tumors occur largely in the
hemispheres of the cerebellum, whereas von Hippel-Lindau
predisposed hemangioblastomas (affecting 60–80 % of patients
with the disease) may be multiple, arising in the cerebellum plus
other locations along the craniospinal axis2,5. The presentation of
hemangioblastomas is a well-demarcated large cyst adjoining a
densely vascularized tumor nodule6,7. Microscopically, these
tumors are composed of two principal components: a dense
capillary network with intervening stromal/interstitial cells,
considered to be the actual neoplastic cells of the tumor1,5,8.  

Recent studies have suggested that hemangioblastomas arise
from stem cells that have the capacity to develop into blood
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ORIGINAL ARTICLE

vessels or blood cells. Vortmeyer and colleagues suggested that
von Hippel-Lindau-associated hemangioblastomas are
comprised of developmentally arrested hemangioblasts, cells
with the potential to differentiate into hematopoietic or vascular
cell types9. This was shown through the expression of
erythropoietin (Epo) receptor in hemangioblastoma specimens.
The research group postulated that stromal cells are the
neoplastic cells of the tumor, and that these cells correlate
morphologically to neoplastic angiomesenchyme. By
demonstrating co-expression of Epo and its receptor EpoR
(involved in embryonic blood island formation) in vHL-
deficient stromal cells and by detecting fetal-type hemoglobin in



these areas, the researchers suggested that the neoplastic cells are
pluripotent.  In agreement with this arrested hemangioblast
hypothesis, gläsker et al. reported that the hemangioblastoma
protein profile is consistent with markers, such as stem cell
leukemia (Scl), brachyury (Bry), colony stimulating factor-1
(Csf-1) and gata-1, identified in the cellular differentiation of the
hemangioblast2. Furthermore, Park et al arrived at similar
conclusions by promoting expansion of mature hematopoietic
and endothelial progeny from tumor specimen-derived cells8.
However, it is difficult to conclude whether these isolated cells
are the neoplastic cells or recruited cells (from circulation/bone
marrow). No studies to date have investigated the expression of
established stem and progenitor markers in hemangioblastoma.
Hence, the identity of the tumor cells remains unknown. 

In this study, we have attempted to profile the cellular
components of hemangioblastomas. Specifically, we wanted to
define the phenotype of the stem cells (if present) and of the
vascular endothelial cells. To achieve this, we performed a series
of immunohistochemical stains to evaluate expression,
localization and relationship between these cell types in
hemangioblastoma specimens. In developing a map of
differentiation and stem cell involvement in this tumor, we hope
to elucidate a model for hemangioblastoma pathogenesis. 

MATERIALS AND METHODS
Hemangioblastoma specimens

Tissue samples of resected cerebellar hemangioblastomas
from 13 patients were obtained from the Brain Tumor Tissue
Bank at the London Health Sciences Centre. The diagnosis was
confirmed at the Department of Pathology and Laboratory

Medicine, Division of Neuropathology, London Health Sciences
Centre. The mean age of the patients was 41.84 ± 12.75 years
(eight males and five females). Three tumor samples were
associated with von Hippel-Lindau. Formalin-fixed/paraffin-
embedded samples were serially sectioned at 5 mm thickness on
positively charged slides. Studies were conducted following
approval by the Research Ethics Board at the University of
Western Ontario. 

Immunostaining
Slides were deparaffinized in xylene, hydrated through a

sequential ethanol gradient, and washed in phosphate-buffered
saline (PBS).  Slides were then subjected to antigen retrieval in
Tris-EDTA buffer (10 mM Trizma-base, 1 mM EDTA, 0.05 %
Tween-20, pH 9.0) and 120°C for 20 minutes using the Antigen
RetrieverTM (2100 Retriever, PickCell Laboratories). For
immunofluorescence staining, slides were blocked using 5%
blocking serum (serum species selected based on host of
secondary antibody). Primary antibody (1:100) was then applied
for one hour at room temperature. Antibodies used for
immunostaining are listed in the Table. Slides were washed in
PBS and incubated with AlexaFluor 488-labelled secondary
antibody (Invitrogen) at 1:200 dilution for one hour.  DAPI (4',
6-diamidino-2-phenylindole; VECTASHIELD® Mounting
Medium with DAPI, Vector Laboratories) was used for nuclear
counterstaining. Slides were mounted using FluoromountTM

Aqueous Mounting Medium (Sigma-Aldrich). Fluorescent
images were captured using Olympus BX-51 microscope
equipped with SPOTTM Pursuit Camera and SPOTTM imaging
software.
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**These antibodies were validated by using placenta specimens and infantile (skin) hemangioma specimens
in our laboratory.

         
 

  Table 1 

 
         

 
Antigen Description Source Reference no. 

Stem cell markers** 

Brachyury (bry) Rabbit anti-human Abcam ab20680 

c-kit Rabbit anti-human Abcam ab5506 

CD133 Rabbit anti-human Abcam ab19898 

Nanog Rabbit anti-human Abcam ab21624 

Nestin Rabbit anti-human Abcam ab93666 

Oct4 Rabbit anti-human Abcam ab19857 

Sox2 Rabbit anti-human Abcam ab93689  

Endothelial cell markers 

CD31 Mouse anti-human Dako M0823 

Others 

!-SMA 
Glut1 
HIF1! 
HIF2! 

Mouse anti-human 
Rabbit anti-human 
Mouse anti-human 
Goat anti-human 

Sigma-Aldrich 
Abcam 
R & D Systems 
R & D Systems 

A-2547 
ab15309 
MAB1935 
AF2997 

               
 

 
 
 
 
 

Table: List of primary antibodies used in immunohistochemistry



A series of double stains were performed using PictureTM Plus
Double Staining Kit (Invitrogen). As above, slides were
deparaffinized, hydrated through a sequential ethanol gradient
and washed in PBS. Following antigen retrieval, endogenous
peroxidase activity was quenched with 3% H2O2 diluted in
methanol for ten minutes. Slides were blocked and primary
antibodies (Table; one mouse anti-human and one rabbit anti-
human antibody combination) were applied simultaneously for

one hour. Slides were rinsed in PBS containing 0.05% Tween-
20. goat anti-mouse Igg-horseradish peroxidase (HRP) polymer
conjugate and goat anti-rabbit Igg-alkaline phosphatase (AP)
polymer conjugate were then applied for 30 minutes. DAB
chromogen and Fast Red were used for detection. Slides were
counterstained with Mayer’s hematoxylin (Sigma-Aldrich) for
30 seconds and mounted using ClearMount™ Mounting solution
(Invitrogen). 
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Figure 1: Immunostaining of hemangioblastoma
specimens for stem cell antigen CD133 (a and b) and
pluripotency marker Oct4 (c-f). CD133 (red) and CD31
(brown) co-localized to endothelial lining of capillaries.
CD133 was also found in the stromal cells that were
negative for CD31. Oct4 (red) appeared in nuclei of
endothelial cells, some perivascular cells, and stromal
cells. Perivascular cell Oct4 positivity was confirmed by
co-labeling with Oct4 (red) and perivascular cell
marker, α-SMA (brown; e and f). No discernible
differences were seen in hemangioblastomas associated
with vHL (right side of the panels: b, d, and f) [images
taken at 20X; inserts show high magnification; asterisk
= endothelial positivity, green arrow = stromal
positivity, and red arrow = perivascular positivity].

Figure 2: Representative images of double-labeling Nanog/CD31 (a) and c-kit/CD31 (b) immunohistochemistry showing
complete negativity of hemangioblastoma cells for Nanog (red) and c-kit (red).  Only CD31 immunoreactivity is seen (brown)
[images taken at 20X; inserts show high magnification]. 



RESULTS
Hemangioblastoma endothelium and stromal cells express
stem cell antigen, CD133

CD133 has been shown to be expressed by stem cells,
endothelial progenitor cells, neural stem cells, and mesenchymal
stem cells. CD133 has also been used to identify tumor-initiating
cells from medulloblastomas, glioblastomas, and prostate and
colon carcinomas10-15. Therefore, we first examined whether
hemangioblastoma specimens contain CD133+ stem cells. We
analyzed all 13 samples for CD133 immunoreactivity and found
robust expression of CD133 in hemangioblastoma endothelium
(Figure 1). Interestingly, CD133 was also present on stromal
cells and sparsely on perivascular cells. Besides cellularity, no
significant differences were observed between sporadic
hemangioblastomas and hemangioblastomas associated with
vHL (Figure 1, a,b). These findings suggest an atypical precursor
nature of the endothelial cells, the perivascular cells, and the
stromal cells in hemangioblastoma. Next, we assayed for Oct4, a
pluripotency marker that is expressed alongside Sox2 and Nanog
in embryonic stem cells16. Similar to CD133, Oct4 also showed
strong stromal positivity (Figure 1, c-f). Nuclear 
Oct4 (active form) was also observed in the some but not 

all endothelial cells (Figure 1, c,d) and the perivascular cells
(Figure 1, e,f).  

Lack of true pluripotency in hemangioblastoma
In order to confirm whether the stromal cells and possibly the

vascular cells are pluripotent (as suggested by Oct4 positivity),
we tested for the expression of Nanog. If the cells are truly
pluripotent, Nanog should be positive and exhibit a nuclear
localization. Interestingly, our results show complete lack of
Nanog expression in the hemangioblastoma specimens (Figure
2a). Similarly, c-kit (commonly used as a marker of bone
marrow-derived stem cells) was negative in hemangioblastoma
specimens (Figure 2b). 

To confirm these findings, including the nuclear localization
of Oct4, we performed immunofluorescence staining of
hemangioblastoma specimens. CD133 was positive in vascular
endothelial cells and stromal cells (Figure 3). Endothelial cells
also showed positivity for Nestin and mesodermal marker Bry.
Oct4 was present in the nuclei of cells (complete overlap with
DAPI). When we assayed for Sox2, we found cytoplasmic but
not nuclear reactivity of the stem cell transcription factor.  
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Figure 3: Immunofluorescence staining was performed
to confirm the localization of stem cell markers (green)
in hemangioblastoma specimens. Endothelial cells were
positive for CD133, Oct4, Nestin, and Bry. Perivascular
cells sparsely expressed CD133, Oct4, and Bry. Intense
Oct4 positivity was seen in the stromal cells. Sox2
transcription factor appeared to be cytoplasmic
(indicating no activity) and Nanog reactivity was
completely absent in the specimens [images were taken
at 20X; inserts show higher magnification; slides were
counterstained with DAPI (blue)].         



Uniform expression of glucose transporter-1 (Glut1) in
hemangioblastoma endothelium

The association of hemangioblastomas with vHL has
suggested a role for the vHL gene in tumor development1,17,18. A
mutation in the vHL gene is suggested to give rise to the tumor18.
Since the product of the vHL gene targets the hypoxia-inducible
factor (HIF; a transcription factor) for proteasomal
degradation18, we tested for the expression of HIF1α and the
downstream target gene glucose transporter-1 (glut1) in
hemangioblastoma specimens. Immunohistochemical analysis of
glut1 showed intense reactivity in the hemangioblastoma
endothelial cells (Figure 4a). Stromal and perivascular cells
displayed no discernible positivity. We then determined whether
HIF1α co-localizes to glut1+ endothelial cells. Our results show
no expression of HIF1α in endothelial cells, perivascular cells,

or the stromal cells (Figure 4b,c). This surprising result
prompted us to study whether HIF2α is expressed in
hemangioblastomas.  HIF2α is structurally similar to HIF1α but
differs in target genes and function19. Our results show robust
expression of HIF2α in stromal cells with little or no
immunoreactivity in endothelial or perivascular cells (Figure
4d).   

DISCUSSION
We hypothesized that hemangioblastomas express many

stem/progenitor cell markers, and that hemangioblastoma
vasculature is derived from these atypical stem cells. The salient
findings of our study include the novel characterization of
hemangioblastoma stromal cells, which exhibit a committed
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Figure 4: Examining Glut1 and HIF expression in
hemangioblastoma showed uniform Glut1 reactivity
(red; upper panels) in the vascular endothelial cells.
However, no HIF1α positivity was seen in the
endothelial cells or the stromal cells (b and c).
Hemangioblastoma specimens associated with vHL were
also negative for HIF1α (data not shown).  (d) Staining
of HIF2α in hemangioblastoma specimen showing
nuclear reactivity in stromal cells. [images taken at 20X;
inserts show high magnification].

Figure 5: Schematic illustration of the
hypothesized origin of hemangioblastomas. We
hypothesize that hemangioblastomas arise from
committed mesodermal stem cells. These SCs may
differentiate into atypical Glut1+ endothelial
cells that retain CD133 and Oct4 positivity.
Pericytes may also be derived from these stem
cells upon differentiation and loss of CD133.
Cells in the stroma that fail to undergo
differentiation become highly vacuolated and
lipid-laden. 



stem cell phenotype. The presence of these committed stem cells
supports the notion that tumor microvasculature originates in situ
(Figure 5), rather than by recruitment processes. 

Nanog, Oct4 and Sox2 are transcription factors that play an
important role in self-renewal of undifferentiated/uncommitted
stem cells. Interestingly, of this triad of transcription factors, we
only observed well-demarcated expression of Oct4. Positivity
was confined to the nuclei of stromal cells, confirming their role
as tumor stem cells. Less abundant expression was seen in some
endothelial and perivascular cells, possibly owing to the atypical
precursor nature of the cells and the decrease in Oct4 expression
upon differentiation into vascular cells. The complete lack of
both Sox2 and Nanog in the nuclei of stromal cells indicates that
these cells are not pluripotent, but are maintained in a committed
stem cell state. Two recent studies have also shown expression of
stage-specific embryonic antigen-1 (SSEA-1) in a small
population of hemangioblastoma stromal cells20,21. SSEA-1 is
well established in mouse embryonic stem cells and denotes state
of pluripotency. However, in human cells, SSEA-1 is expressed
only upon differentiation of embryonic stem cells (time
coinciding with decreased expression of SSEA-3 and -4)22,23.
Taken together, these recent studies and our findings show a
committed state of the hemangioblastoma stromal cells.  

An insight into the atypical nature of the hemangioblastoma
stem cells can also be gained by examining CD133+ cells. As
noted by other studies and shown here, hemangioblastomas are
positive for CD1338,24. However, with its expression previously
being reported only as “scattered”, our group is the first to
describe well-demarcated endothelial localization of CD133 in
hemangioblastoma. CD133 localization to vascular cells has
been documented in highly angiogenic tumors, such as non-
small cell lung cancer, infantile hemangioma, malignant glioma,
and breast cancer25-28. Further, it was shown that CD133 positive
glioma cell subpopulations (compared to CD133 negative) are
responsible for enhanced angiogenesis, endothelial cell
migration, and vessel tube formation29, indicating that this cell
type is involved in (or representative of) maintaining the
angiogenic features of a tumor. CD133 positivity was also seen
within the stromal cells of the tumor, and less abundantly in
perivascular cells. Recently, adipose-derived mesenchymal stem
cells were shown to express Oct4 but not Sox230. However, these
mesenchymal stem cells lacked the expression of CD133 and
markers of endothelial/perivascular cells. Together, this suggests
that the stromal cells in hemangioblastoma are unique in that
they express Oct4 and CD133.  

We studied the expression and localization of several other
proteins, including c-kit (CD117), a cytokine receptor typically
expressed on the surface of bone marrow-derived progenitor
cells31. The apparent lack of c-kit positive cells across all
hemangioblastoma samples analyzed suggests that bone
marrow-derived progenitor recruitment may not be responsible
for tumor angiogenesis. Another protein whose expression
would substantiate these notions is glut1. The expression of
glut1 is ubiquitous in most fetal endothelial cells during early
development. This level of expression is selectively lost as the
cells differentiate, and in adults, glut1 expression is limited to
erythrocytes and endothelia with blood-tissue barrier function32.
If recruitment were the major contributor to the endothelial cells
in hemangioblastoma, we would expect to find mosaic vessels

and/or glut1 negative vessels. Our results showed intense glut1
reactivity in the endothelial cells (in the absence of HIF1α),
demonstrating vasculogenesis as the main process involved.
Negative HIF1α was an unexpected finding as VHL product has
been shown to cause ubiquitination  and degradation of HIF1α18.
HIF1α also marks lesions in VHL kidneys33. Furthermore,
vascular endothelial growth factor (VEgF), downstream target
of HIF1α, has been shown to be highly expressed in
hemangioblastomas34,35. Interestingly, VEgF levels correlate
with HIF2α but not with HIF1α protein levels in heman-
gioblastomas36. To probe this further, we analyzed
hemangioblastoma specimens for HIF2α and show robust
expression of HIF2α in stromal cells.  HIF2α has recently been
shown to be highly expressed in glioma stem cells37,38.  HIF2α
also marks neural stem cells but not progenitor cells37,39,40. This
suggests that HIF2α positive stromal cells in hemangioblastoma
may be the tumor-initiating cells.         

Overall, our findings indicate that the hemangioblastoma
phenotype is regulated by a committed hemangioblastoma stem
cell (Figure 5). These committed stem cells (Nanog-, Oct4+,
CD133+) may be derived from uncommitted stem cells (Nanog+,
Sox2+, Oct4+), and are found within the stroma of the tumor.
Neovascularization then likely occurs by vessel formation in situ
(vasculogenesis) upon upregulation of angiogenic factors (such
as VEgF) that can induce differentiation of stem cells into
vascular cells. The endothelial cells that comprise the vessels of
hemangioblastoma are unique in that they are also relatively
immature (able to maintain the expression of CD133), which is
representative of the highly vasculogenic nature of this tumor.  
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